O.P.Code: 20EE0254

R20

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech I Year II Semester Regular & Supplementary Examinations August-2023

ELECTRICAL TECHNOLOGY

	ELECTRICAL TECHNOLOGI			
∕ Ω÷	(Electronics & Communications Engineering)	Mov	Mort	60
Tim	(Anguar all Five Units 5 v. 12 = 60 Marks)	wax.	Mari	ks: 60
	(Answer all Five Units 5 x 12 = 60 Marks) UNIT-I			
1	a Derive expression for generated EMF of a D.C generator.	CO ₁	1.3	6M
	b A 4-pole, long shunt, lap wound generator supplies 25 kW at a terminal voltage of 500 V. The armature resistance is 0.03 Ω , series field resistance is 0.04 Ω and shunt field resistance is 200 Ω . The brush drop may be taken as 1 V. Determine the EMF generated. OR	CO1	I.2	6M
2	Explain the constructional details of a D.C generator. UNIT-II	CO1	L2	12M
3	a Explain the working principle of D.C motor.	CO2	L2	6M
	b State the voltage and power equation of D.C motor explaining each term.	CO2	L3	6M
	OR	~~~		
4	a A 250 V, 4 pole D.C shunt motor has two circuit armature winding with 500 conductors. The armature circuit resistance is 0.25 Ω , field resistance is 125 Ω and the flux per pole is 0.02 Wb. Find the speed and torque developed if the motor draws 14 A from the mains.	CO2	L3	6M
	 b A 4 pole, 500 V DC shunt motor has 720 wave connected conductor on its armature. The full load armature current is 60 A & the flux per pole is 0.03 Wb, the armature resistance including brush contact is 0.2 Ω. Calculate the full load speed of the motor. 	CO3	L2	6M
5	a With relevant phasor diagrams, explain the operation of a practical single phase transformer under no load condition.	CO4	L2	6M
	b Compare Core type & Shell type transformer. OR	CO4	L3	6M
6	A 5KVA, 500/250V, 50Hz, single -phase transformer has the following results:	CO7	L4	12M
	From O.C Test: 500V, 1A, 50W (H.V Side is opened)		1	
	From S.C Test: 25V, 10A, 60W (L.V Side is shorted) Determine:			
	 (i) The Efficiency on Full-load, 0.8 lagging P.F. (ii) The Voltage Regulation on Full-load 0.8 lagging P.F. (iii) The Efficiency on 60% of Full-load, 0.8 lagging P.F. (iv) The Voltage Regulation on Full-load, 0.6 leading P.F. 			
	UNIT-IV			
7	a Explain construction features of wound rotor machine.	CO5	L2	6M
	 b A 3-φ 4 pole induction motor is supplied from 3-φ 50 Hz ac supply. Find (i) synchronous speed (ii) rotor speed when slip is 4% (iii) the rotor frequency when runs at 600 r.p.m. OR 	CO5	L3	6M
	Derive a general expression for the torque developed in a 3-phase induction motor.	CO5	L3	12M

UNIT-V

9 Sketch and explain the open circuit and short circuit characteristics of a CO6 L5 12M synchronous machine and mention the calculation of voltage regulation by the use of their results.

OR

10 Derive an EMF equation of an alternator.

CO6 L4 12M

*** END ***

If the Public of the public of the second of